
AD-770 881

DATACOMPUTER PROJECT SEMI-ANNUAL
TECHNICAL REPORT, FEBRUARY 1, 1973
TO JULY 31, 1973

Computer Corporation of America

Prepared for:

Army Research Office-Durham
Advanced Research Projects Agency

1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
52d5 Port Royal Road, Springfield Va. 22151

—-"«--*■ *~~-*~..
iuteii-:.: ;■:■■■ '. ■ ■■:;■

COMPUTER CORPORATION OF AMERICA

00
00
o

3

DATACOMPUTER PROJECT

SEMI-ANNUAL TECHNICAL REPORT

February 1, 1973 to July 31, 1973

Contract No. DAHC04-71-C-001:

ARPA Order No. 1731 "^«iStU

NATIONAL TECHNICAL
INFORMATION SERVICE

Submitted to:

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Program Management

i<

si

'"igäi&sgmh*'

I
I
I

I
I

i

Computer Corporation of America
575 Technology Square

Cambridge, Massachusetts 02139

DATACOMPUTER PROJECT

SEMI-ANNUAL TECHNICAL REPORT

February 1, 1973 to July 31, 1973

1

This research was supported by the Advanced Research Projects

Agency of the Department of Defense and was monitored by the

U.S. Army Research Office-Durham under Contract No. DAHC04-71-

C-0011. The views and conclusions contained in this document

are those of the authors and should not be interpreted as

necessarily representing the official policies, either expressed

or implied, of the Advanced Research Projects Agency or the

U.S. Government.

II-

--** *-»«•>-J KJSäfflÖlf ?**?*'■ '■■■■ ;««*V<J»W.> '::~iWt&QH&Br »

I
I
I
I
1
I
I
I
I
I

I
!

I
I
1
I
I

Abstract

During the present reporting period, the datacomputer system

achieved its initial operating capability on the Arpanet,

and a number of host sites began using the service. For

the month of July, the number of weekly connections to the

system averaged about 500.

HI.

■'■■-■ i ' ■■\iv,^-wWlw^lÄWs,

■•'»

 ■ ■• - ■
,

I
I
r
i
i

i

Table of Contents

Abstract
1. Overview

1.1 Review of Basic Concepts .
1.2 Status of Project

2. Design Activities
2.1 Oatalanguage
2.2 Software System

3. Software Implementation
3.1 Request Handler
3.2 Services

4. Initial Network Service
4.1 Network Survey Data
4. 2 ETAC Weather Data
4.3 DFTP
4.4 Utilization Statistics ...

5. Miscellaneous Acti—'.ties
5.1 Seismic Dat: . icing Group

5.2 Technical Presentations ..

1
1

3
7
7
8

9
9

10
12
12
12

13
13
15
15
15

j

1
m

I
1

Appendix: Version 0/9 Language Specifications

Figures
1. Logical View of Datacomputer
2. Hardware Overview of System
3. Hardware Block Diagram - CCA Installation

(Equipment in dashed outline is planned for 1974)

IV.

2
4

5

.*■>... ...'.;, . ." !*fU.Li W.-A^VrK« '■■ ■.lJw.y-,»-''-«.ji

-^

iSMta^i .

I
I
I
I
I
1
I
I
1
I
1

1. Overview

1.1 Review of Basic Concepts

The goal of the project continues to be the development of

a shared, large-scale data storage utility, to serve the

needs of the Arpanet community.

The system under development will make It possible to store

within the network such files as the ETAC Weather File or

the NMRO Seismic Data Pile, which are measured in hundreds

of billions of bits, and to make arbitrarily selected parts

of these files available within seconds to sites requesting

the information. The system is also Intended to be used as

a centralized facility for archiving data, for sharing data

among the various network hosts, and for providing inexpensive

on-line storage to sites which need to supplement their local

capability.

Logically, the system can be viewed as a cloaed box which

is shared by multiple external procesr jrs, and which is

accessed in a standard notation, "datalanguage" (see Fig. 1).

The processors can request the system to store information,

change information already stored in the system, and retrieve

stored information. To cause the datacomputer to take action,

the external processor sends a "request" expressed in data-

language to the datacomputer, which then performs the desired

data operations.

From the user's point of view the datacomputer is a remotely-

located utility, accessed by telecommunications. It would be

impractical to use such a utility if, whenever the user wanted

to access or change any portion of his file, the entire file

-1-

:. .\< .-.'.L/i. i.il,4j ;—■ sar*^"*"******««*. ,

I
I
I
I
I
I DATACOMPUTER

Figure 1. Logical View of Datacomputer

-2-

\fa&v<m&.?!&> 3&&S&5**; asaaaBK» -ä».-»«.*'« ,= .^-i-..,..- ■«> O^JH^-1

had tu be transmitted to him. Accordingly, data management

functions (information retrieval, file maintenance, backup,

access security, creation of direct and inverse files, main-

tenance of file- directories, etc.) are performed by the data-

computer system itself. The user sends a "request", which

causes the proper functions to be executed at the datacomputer

without requiring entire files to be shipped back and forth.

The hardware of the system is shown in overview in Fig. 2

and in greater detail in Fig. 3.

The program for the system processor handles the interactions

with the network hosts and is designed to control up to three

levels of storage: primary (core), secondary (disk), and

tertiary mass storage. Currently, the CCA facility is operating

with primary and secondary storage only, with the addition of

tertiary storage planned for 197*1 - Installation of a tertiary

storage module will leave datalanguage unchanged, and will

therefore be imperceptible to users of the system (except

insofar as it affects performance and the total storage capacity

available for data).

In addition to using the dedicated equipment at CCA it is

planned that datacomputer service will also make use of

hardware resources located at NASA/Ames, using CCA software.

The two sites will provide mutual backup for one another,

thereby guarding against accidental loss of data and providing

for satisfactory uptime of the overall service.

1.2 Status of Project

During the present reporting period, the datacomputer system

achieved it3 initial operating capability on the Arpanet, and

a number of host sites began using the service (see Section 4).

-3-

ES ' - ■ . . ■ ■ ■ :■ ■ - ■ ■ ■

■ ■. :. ■■■■ C ■ ' '-"''

I
I
I
I
1
I
I
I
I
I
I
I
I
1
I
I

SECONDARY
STORAGE

IMP
INTERFACE

PRIMARY
STORAGE

MEMORY BUS

SYSTEM
PROCESSOR

TERTIARY
STORAGE

I/O BUS

PERIPHERALS

IMP

ARPANET

Figure 2. Hardware Overview of System

-4-

$$^£^£&$&3&&£!®>g fäVWMqr,' - ■■-,. ,..,,.-■,;; -■:-;. :f>*'i-*^Bß^|l

I
I
I
i
I
I

!
i

i

I

ME10
MEMORY
»WCt

MEIO
MEMORY
daw

MEIO
MEMORY
two

MEIO
MEMORY
(1610

Of 10 OAT A
CHANNEL

RP10 0ISK
PACK CONTROL

RPOJDISK

RPWDISK

RPOJ DISK'

RP02 OISK

H RP02 DISK

(YI.CONC.
SAIOA

ISM
CHANNELS

CALCOMf
1030

CALCOMP
DUAL
»30 DISK

| TERTIARY I
I STORAGE I—
• INTERFACE I

• TERTIARY .

]j STORAOE |

MEIO
MEMORY
(16KI

MEMORY
BUS

TENEX
PAGER

KA10
CENTRAL
PROCESSOR

TD10
DtCTAPE
CONTROL

BA10
CONTROL

DC10A DATA
LINE SCANNER
CONTROL

TM10ATAPE1
CONTROL

TU30S
MAG. TAPE

IMPIO
INTERFACE

KSR35
CONSOLE

TUMDUAL
DECT APE

TUMOUAL
DECTAPE

LP10 LINE
PRINTER

DC108
DATA
LINE
GROUP
UNIT

VT06
TERMINALS

KSR3S
LOGGING

TiP

303
MODEMS

ARPA
"NETWORK

VADIC
103
MODEMS

DIAL-UP
LINES

I Figure 3. Hardware Block Diagram - CCA Installation
(Equipment in dashed outline is planned for 1974)

-5-

^MsHB? :■- ..■■ ■ j-vv-.^r.. - -.-■■■■

.. .. ,:. . :...-.,.. ■•■■■■ ■■ ■■

I
I
I
I
I
I
I
I

I
I
1
I
1
I
I

The service is based on Version 0/9, which was completed

during the present period. (Previous versions of the system

had been used only for demonstration and for internal CCA

development purposes.) This version offers a (somewhat primitive)

subset of the capabilities of the full datalanguage discussed

in Working Paper No. 3»

The primary restriction of Version 0/9 is that elementary data

types must be fixed-length ASCII strings. This restriction

will be lifted in Version 0/10, scheduled for December 1973,

which will provide a larger subset of the datalanguage capa-

bilities.

Currently, only disk storage is available internally to the
Q

system. (Total disk storage is 9 x 10 bits, to be increased

to 2.3^ x 109 bits in the fourth quarter of 1973.) Plans call

for the addition of tertiary storage in 197**. Since data-

language is device-independent, these Increases In storage

capacity will not affect the user programs running on network

hosts.

wmmmmmgrnm <-m

2. Design Activities

2.1 Datalanguage

A formal specification of datalanguage Version 0/9 was completed

(see Appendix).

Progress was made In the specification of datalanguage for

Version 0/10, This version, to be available over the network

in December 1973, incorporates a data security facility at

the directory level, more general data types and more general

data structures. Specifically, there are arbitrary byte

strings as well as character strings. Variable length as well

as fixed length containers are permitted. In his data des-

cription, the user has some control over alignment of logical

object and physical object boundaries. Physical byte sizes of

36, 32 and 8 are supported.

Based on the results with datalanguage to date, a major design

iteration has begun. In the revised language, attention will

be given to more general data structures, pointers, a syntax

that is better for generation of language requests by programs,

language extensibility, multiple descriptions of data, data

integrity and privacy.

From the first language design period, the biggest changes in

thinking have come from a better understanding of the data

sharing problem on the network scale. In order for the network

community to get the most out of the datacomputer facility,

groups of users must be able to do two things they could not

do well with the initial language: (1) develop their own systems

of shared software that reside at the datacomputer, and

-1-

^^^^^^^^^m^^mmmammmmmmi.,u\iK.--i,jmB-mmmn-Lt,.. •. --.wim .^r^^-..

■mmmaummi-

(2) have a description of the data that is independent of

both the stored organization and the descriptions used by

others.

That is, users must be able to have shared collections of

access functions, data validation functions, and the like,

specified in datalanguage, stored at the datacomputer, and

associated with particular collections of data. Only in this

way can distributed systems of user programs have a shared,

centralized data management facility that is built around the

datacomputer software but specialized for their requirements.

The independent description facility is needed so that the

proper modularity cm be designed into the global system

involving datacomputer software, user requests, user files

stored on the datacomputer, data descriptions, and a distributed

system of user programs. It will be important to make com-

ponents of such large systems as independent as possible. User

programs should be independent of the stored data organization

when this is feasible.-. Similarly, user programs not concerned

with certain pa^ts of the data collection should not have to

know about them, both for protection of privacy and for

simplicity in system reorganization.

Facilities that meet these requirements are being investigated.

In addition, earlier work on the language is being reviewed

and improvements are being considered.

2.2 Software System

The current design of the software system basically corresponds

to the design documented In Working Paper No, 5 (February 29,

1972). Detailed design has continued as necessary, and is

discussed in Section 3 as part of the Implementation effort.

-8-

!

I
I
I

I
I

I

I
I
I
%

3. Software Implementation

During this period, Implementation of Version 0/9 of the

datacomputer was completed. The basic program structure Is

the same as In Version 0/8, but the new release Incorporates

additional capabilities. Version 0/9 is a multi-user system

that allows simultaneous» access to shared files. It includes

minimal updating facilities, improved error diagnostics and

recovery procedures, and standard initial connection protocol,

The facilities are described in detail in "Specification for

Datalanguage, Version 0/9", HJC 16446, June 6, 1973 (see

Appendix of present report).

3.1 Request Handler

The Request Handler was developed for Version 0/8 along the

lines of the system architecture outlined in Working Paper

No. 5.

New in Version 0/9 is the ability to delete files and to append

to files. Every open data container has a user-specified mode

associated with it. The modes are: read, write and append.
St

An assignment to a container whose mode is write replaces the

3 data already in that container. If the mode is append, the

new data is added to the end of the container. Parsing of the

I datalanguage and tuple generation is essentially the same in

both cases. During execution, one tuple (the Open tuple) sets

_ up a pointer to the beginning location of the new data. In

I the write case, the pointer points to the beginning of the

container; in the append case, to the end. Except for the

I Open tuple, execution of write and append assignments is

identical.

-9-

Zif^f^lWJt-'f^r^w^JVSV^^
*-**mz$rm&*rm*>!**Mi-z>B

-

I
1
I
I
I
I
I
I
I
I
I
I
I
i
1
I
!

I

The datacomputer automatically updates the inversion when a

file is updated. Other users are locked out until the update

operation is complete.

Delete requests are passed immediately to a command executor

(CO), which calls the services routine to remove the node

from the directory. No parse tree is generated.

Users can mix inverted file keys and non-keys freely in

expressions. Where possible, the datacomputer takes advantage

of the inversion in evaluating the expression.

3.2 Services

Storage Manager

The storage manager now recognizes several kinds of devices:

disiv, special disk, and tape. Data structures have been

developed for describing each device, and the address-mapping

and storage allocation routines make use of these structures.

This was done in preparation for adding a tertiary store as

a new device.

I/O Manager

Standard Initial connection protocol was implemented. Users

can open secondary network connections for the transfer of

data.

Directory System

Directory nodes can now be deleted.

The user's datalanguage description is stored in the directory.

The user can access the description as necessary. He can also

get a list of all nodes in the directory.

-10-

f%jjfäjg$&?%g%0rt%*.*..,.iH

I
I
I
I
I
I
i
I
I
I

I
1
1
!

I
I

Supervisory Functions

The datacomputer runs under a monitor which allows for several

users. These users share a database and can simultaneously

access a file. To support this feature, all the code has been

made re-entrant.

A module (OP) has been added to provide for communication with

a system operator.

Messages have been divided into five categories: synchronization,

informational, user error, circumstantial error, and data-

computer error. A code prefixed to each message indicates to

the user program the category of each message. In some cases,

the coc'e uniquely identifies the message. These codes aid the

user program in taking appropriate action.

Error recovery procedures have been added. Depending on the

seriousness of the error, these range from restarting one

user to bringing down the entire datacomputer system.

A dump/restore utility for datacomputer files has been

implemented.

-11-

^■^^«*«*<^mmiArrmm*fmtmm

%,T^^s^r^^^~^^mvf^Y.^Hf^^vr - p P^^WSPW^TW*?^^^^

.

I
I
I
I
I
I
I
I
!

I

4. Initial Network Service

4.1 Network Survey Data

The datacomputer provides on-line storage and data management

services for the Network SURVEY program that runs at MIT

Project MAC. SURVEY attempts to do a complete ICP to the

LOGGER socket of each host in the Arpanet at 20-minute Inter-

vals. It records the date, time, status and response time for

each host and transmits the data to the datacomputer. If the

datacomputer cannot accept the data, it is held temporarily

at MIT for later transmission to the datacomputer. The re-

transmission occurs automatically.

Another program a*- MIT generates datalanguage for selective

retrieval of the SURVEY data from the datacomputer.

Storage of the SURVEY data at the datacomputer on a regular

basis began on July 10, 1973.

4.2 ETAC Weather Data

Plans are being made for storing a large file of weather data

collected by the United States Air Force Environmental Technical

Applications Center. In order to get operational experience

with this data, two small files have been loaded using Version

0/9. One is the station library, which has information about

the 12,000 weather stations that report regularly. The second

file consists of one day's weather observations from the entire

world.

These datacomputer files have been successfully accessed from

CCA. ETAC will begin using them shortly.

-12-

wm ■iliiiniMHM^H

•*3Bf@lg§*l*zr> -7-r*™.*?^* '■.■JwJMmv.^"** ^^53*«**^ "JM*??f T wm«j'ws^j«pfi»iii 'iVjfttgtM'wv'wwFwnppm» 7^imrvn!q|

I
I
I
I
I
I
I
I
I

4.3 DECtape FTP

Harvard University is using the datacomputer to extend its

storage capacity. A user program running at Harvard transfers

files between Harvard's disk and the datacomputer. Once on

disk at Harvard, a file can be accessed by other programs

there. A Harvard user can save his updated file by storing

it again at the datacomputer. This facility allows users

access to "off-ljne" files without manual intervention.

4.4 utilization Statistics

The following chart Indicates the number of times each Network

site has connected to the datacomputer in the present reporting

period since Version 0/9 was nude available over the Arpanet.

-13-

WßttrtfmtmKfr- *TO(WW7".'JU. UJI-IJS-ÖMIISJBM

;-i- D&emie Team »wo •
■.

-'■-'.•^S^**^

I
I
I
I
I
I
I
I
I
i
I
I
1
!

to
_J

< u\ 10 IH mcM o
1- in lAtn Kl/lflO
c •♦•♦»-< ♦ ♦ m
H- +

ooociHn
HtOISCON
•"•♦♦♦♦
♦

Norn
•♦ -► CM

ONO
■a -a o
■f ♦

O lO

IX)

ÜJ

I

>
< r

1-1
UJ o

CM
UJ lO HK1 JN

CM CM

o
in

o

o
X <

1

< a

i-t rH CM r-t IT». <N r-< i-t J- o o

o
o
■«-

c
1 CM O 3

J- J» 00

aifi«
c?< ^ f*»

CM

o o ui CM a>
O m LTI lO 'J3
1-1

IDIN J-

!"» in tO
J3 IM Kl -J a
r-» in io r*- o

Kl

CM

Kl

U1N N

CM tO 'J -•* CO -f r» in tn -* rH CM CO inioNinci CM O KI in co -* J- < HHIA CO Kl -*CM l-l ■H r-l i-t in l-H f.M Kl r> cn
o t-l CM CM
o

1
I
I

00 o
.0 (/> ts> CO .j _l

Kl Kl Kl flflj flKlM wm KIKI _j ro ^w Kito Kl Kl _l mm j < <
r^ r«. p^ r-. r- < r^ r«. r— r-r» r« r-. <t r-« r--. r-. r— r— f» 1- < r>- r-. < H h-

1 1 1 l l (~ l 1 1 i i 1 1 h- l l i l i 1 1 t- 1 1 t- O O
 > t * -1 _l O -j _J -j -j-J JJC i i i) t _) -J O JJO l~ H
3 3 3 33t- 3 3 3 33 33 H- 3 3 3 3 3 3 3H 3 .3 »~ ()
"3-3-3 "3 ~3 1 "3-3-3 33 "3-3 1 "3-3-3 3-3 ~3 ~3 1 3 3 1 — a

1 1 1 i i v: 1 1 1 1 1 1 1 M 1 1 1 1 1 1 1 >/: 1 1 V K w*

r-l CM Kl ^in uj in r«. oo OlO rH<N ÜJ rt rfinoN CO C*l UJ OHUI !—' «t
r-l r-l iH HHUJ i-4 r-l r-t fHCM CM CM UJ CM CM CM CM ^M ~4 CM UJ KI KI uj ö T

'S / 3 '£ -» O
Q .3 — 1- z ZüJQ 3 — H;: 2 UJQ 3 — H <£ ZUJ "
tu X et < 3 O 3 UJ ICt <3 O 3 UJ X et < 3 O 3
JS. t- U. </) t/1 Sh- 2 H-u. C/>'./> I£ 1- 3: h- u. t/> VI :E K-

-14.

ii i jJiLuumiM.wppi^WHWi.iWPJJ.^i'. uii mmmmmmmmmmmmmmm

I
I
I
I
I
I
I
1

5_. Miscellaneous Activities

5.1 Seismic Data Working Group

Under the auspices of ARPA Nuclear Monitoring Research Office,

a seismic data working group was formed on Pebrufiry 26, 1973

"to coordinate work in progress in planning the Seismic Data

Acquisition, Processing, Analysis and Storage System required

to support the ARPA Seismic Verification System".

Membership of the seismic data working group consists of

CCA (data storage), BBN (data communication), and Teledyne

Geotech (processing).

CCA accepted this responsibility as part of its present ARPA

contract. During the present reporting period six meetings

were held in Alexandria, Virginia at the Seismic Data Analysis

Center.

CCA's contribution to these meetings was to discuss alternative

ways in which large seismic data files collected from stations

around the world could be stored centrally and disseminated

to interested parties. Alternate technical approaches were

presented, and cost figures were developed. CCA became

acquainted with the data storage and dissemination problems

of the seismic community.

I

5.2 Technical Presentations

Two major technical presentations on the datacomputer project

were given during this reporting period. The first was at

the EDUCOM Spring Conference, devoted to computer networks,

at Harvard University on April 6, 1973. The second was at the

National Security Agency, Ft. Meade, Md. on June 21, 1973.

■—■

rrr***m-r'<-i!*m!g$; »1 111 '""!'
^

'-I^T.* ■-;': '7-
-.-^.■■>.sipSii:r <-. ,„,-^-^^..vL-^: .j-'^^t-?/,-^^^

I
I
I
I
I
I
J
I
1
I
1
r
i
!

I

Appendix

Version 0/9 Language Specifications

18

""«»««^

' - :-•"-: .-,...

I
I
I
!

i

NIC IbitUb
IIUG/RFC 515

R. Winter
Computer Corporation of America

OG-Jun-73

Specifications for Datalanguage, Version 0/9

P.rpf.-ice

Uutdlanguage is the language processed by the Dataconputer, a data
utility system being developed for the Arpanet. The Datacomputer
performs data storage and data management functions for the benefit
of computers on the network.

Version Ü/9 is currently running at CCA. This version is extremely
primitive; however, it does offer an opportunity for experience
with the Uatacomputer and with fundamental Datalanguage concepts.

Subsequent versions will provide greater portions of the full
Datalanguage capability/ which has been described ea-Her
(lUüLaJLangjLa&fc/ Working Paper No. 3, Datacomputer Project, October,
1971, NIC 8Ü28). For example, one of the primary restrictions in
ü/J—elementary d3ta items must be fixed-length ASCII strings--wi11
be eliminated in Version Ü/10, which is currently being
implemented.

liased on the experience gained
versions, and based on the
specification of the full

n the implementation of these early
feedback from their use, a revised

language will be issued.

17

<4£l0fcfM«M>#£>*4s-fV

P^^^SW^T^-^''^^^^ ■■■ ■■-■-:- ,--■-*■■; W! ^y. i.ffl*v - ^^.r^^T.^-T^JK^r^^r.j»-»™-^*'.^

I
I

Specificatiuns for uatalanguage, Version 0/9 Page

1
I
I
i
i
1
I
i
1
I
f
I

1. Introduction

This document presents a precise and complete specification of
Uatalanguage, Version 0/9. It is organized into 11 sections, of
which this introduction Is the first. Section 2 discusses the
capabilities of Version 0/9 in general terms. Sections 3 nnd k are
concerned with data description and the directory. Sections 5
through U cover the expression of data management operations.
Section S discusses the recognition of names. Section 10 covers
miscellaneous topics and Section 11 specifies the syntax in BUF.

This specification is to be followed with a user manual/ which will
present the language in tutorial form and treat components of the
Uatacomputer-user interface -.ther than the language.

2. Capabilities of Version Ü/9

Version Ü/9 of Uatalanguage has capabilities for the storage of
files; for addition of data to existing files/ and for the deletion
of files. Retrievals can output whole files as well as subsets of
files. Data can be selected from files by content, using
expressions formed from boolean and inequality operators.

At the uption of the file creator, an inversion is constructed and
maintained by the Datacomputer. The inversion increases the
efficiency of selective retrieval, at the cost of storage space and
file maintenance effort. Users other than the file creator need
not be aware of the existence of the inversion, or of which fields
are inverted file keys. The language is designed so that they
state the desired result of a retrieval, and the Datacomputer uses
the inversion as much as the request permits.

Elementary data items are fixed-length ASCII strings,
restricted class of hierarchical structures.

Files are a

llany of the restrictions mentioned
short-lived. In particular, those
asterisks (***) refer to restrictions
weakened or eliminated entirely in
software.

18

in this
statements
ihat will
the next

memo wi11 be
followed with 3
be considerably
version of the

.'■,. t,.;,.;.:;./;*-<v--^>;--V >;>,-,-. ^-5 «a^fgM-'^i-rt-fji"fiij||~- !Zr^r***tmnlWBiMli

■:-- ■^.--ty.T-r ■■■■ - ^:"^^¥9f>g^^^l^|l«<^'V'-^T>ir^H|

I
I
I
I
1
I

I

!

Specifications for Datalanguage, Version 0/9 Page 3

3. Data Description

A container is a variable whose value is a data object of general
character and arbitrary size (In Version 0/9/ size is restricted.
See section 3.4). Examples of containers which are implemented in
other systems are files, records/ fields, groups, and entries.

The container is distinct from the data in the container. For
example/ soace allocat i«n is an operation on a container/ while
changing the unit orico field from 25 to 50 is an operation on data
in a container.

A container may enclose other containers. When a container is not
enclosed by another container/ it is said to be outermost. if
con'.ainer A encloses container B, and no other container in A also
encloses 0/ then A immediate!v encloses B.

A Datalanguage description is a statement of the
container.

properties of a

AH containers have the attributes ident and type. I dent is a
character string by which users refer to the container. Type
determines the form of the container's value; the value can be
elementary, or it can consist of other containers. There are 3
types: LIST, STRUCT, and STRING(***). A LIST contains a group of
containers having the same description. A STRUCT contains a group
of containers, each of which has its own description. A STRING is
a sequence of ASCII characters. While a STRING is not really an
elementary item, it is handled as one in Version 0/9.

Certain containers can have other attributes. An outermost
container has a funct ion. The function attribute specifies whether
the container is to be used for storage or for transmission.

üJ7P is some meaningful dimension of the container, which is
type-dependent. It is used for space allocation and data stream
parsing.

An aggregate container (i.e., one that contains other containers)
has as an attribute the description or descriptions of its
components. Thus if S is a STRUCT containing A, B, and C, then the
descriptions of A, B, and C are attributes of S.

STRING certain contexts can have an inversion
access property that is not rsally local to

th it for convenience. w

defined in
attribute. This is an
the STRING, but is associated

3.1 Ident

The ident of a container is composed of
characters, the first of which is alphabetic
consist of more than 1Ü0 characters.

19

alphanumeric
It may not

I
I
i
I
1
I
1

i
I
I
1
1
I
I
I
1
I

Specifications for Oatalanguage, Version 0/9 Page k

The elements of a STRUCT must have tdents unique in the STRUCT.

5.2 Function

The function of a container is either FILE, PORT, or TEMPORARY
PORT. When the function is FILE, then the container is used
for storage of data at the Datacomputer. When the function is

data into
TEMPORARY
container
retained

created.

PORT, then the container is used for transmission of
or out of the Uatacomputer. When the function is
PORT (which may be abbreviated TEMP PORT), the
behaves like a PORT; however, its description is not
in the uatacomputer beyond the session in which it is

3.3 Type

Type is one of: LIST, STRUCT, or STRING. These are defined on
the preceding page.

in it; occurrence of a STRUCT, the elements appear in the order
in which their descriptions appear in the STRUCT description.
All elements are present in each occurrence of the STRUCT.

An element of a STRUCT or LIST can be a container of any
datatype. However, lu£. outprmOSt container PlüSt iifi. A
LLiiK***).

3.4 Size

The size of a STRING is the number of characters in it. The
size of a STRUCT is not defined (***). The meaning of the size
of a LIST depends upon other properties of the LIST (***).

Ordinarily, the size of a LIST is
An exception is the case of
outermost-LIST with a function of
of LIST-members for which space
size is present in this case, the

the number of LIST-members.
the outermost-LIST. In an
FILE, the size is the number
should be allocated. When no
system computes a default.

In an
ignored

outermost •LIST with a function of PORT, the size is

Only outermost containers may be larger than a TENEX page (2560
ASCII characters)(***).

.5 Inversion

An inversion is an auxi
retrieval by content.

inry data structure used to facilitate

Its basic application is the fast retrieval of sets of
outermost-LIST-members (this can be extended to other container
sets, and wi11 be after release 1). Consider a list of weather
observations, stored as a file on the Datacomputer. If quick
retrieval of observations by COUNTRY is desired, then this is

20

- ■ -■ ■'■»«***:■;-■■:* ' ■. ■■.— - ■,: i-r .-..—■*■ ■;T'T:.' ■ ^...»-^.f^^erv^,.- :■-■■...--. - ---_- ;....r..,. ■■■■■■-:;.-■ -■-'^-^^■r?pÄ

■ ■ ■ ■ ■ ■ ■■■:''■ '■>■■■:•■■ -■..■ ■ . .- . . ' ■ ■■■ --: ■' ' '■'■■ '.-...

I
I

Specifications for Datalanguage, Version 0/9 Page

I
!
4

i

I
I
1
i
1

I
I

i
1
I

indicated in the description of the COUNTRY container.
According to common usage in information retrieval/ this makes
COUNTRY a kcv in the retrieval of observations.

Note that the inversion option only affects the nfficiencv of
retrieval by COUNTRY, not the abilitv to retrieve by COUNTRY.

There are restrictions on use of the inversion option. First/
it can be applied only to STRINGS. Second a STRING having the
inversion option must occur only once in each
outermost-LIST-member. Third/ it is ignored when applied to
STRINGS in PORT descriptions.

Eventually there will be several types of inversion option; in
Version Ü/Ü there is only the 'D* option (for distinct).

3.0 Syntax

The description ?s simply an enumeration of properties; these
properties are specified in the order:

<ident> <function> <type> <size> <other>

Properties which do not apply are omitted.
An example:

F FILE LIST (25) A STR (1U)

Here 'F* is the <ident>/ 'FILE' is the <function>/ 'LIST' is
the <type>/ '(25)' is the size, and 'A STR (10)' is the <other>
of one description. Of course, 'A STR (10)' is itself another
description: the description for members of the LIST named F.

An example of a complete description for a file of weather
observations keyed on location:

WEATHER FILE LIST
OBSERVATION STRUCT

LOCATION STRUCT
CITY STR (10)/ i-D
COUNTRY STR (10)/ I«0
END

TIME STRUCT
YEAR STR (2)
DAY STR (3)
HOUR STR (2)
END

DATA STRUCT
TEMPERATURE STR (3)
RAINFALL STR (3)
HUMIDITY STR (2)
END

?1

mmM^ammmmm

tm®*mv<*'ix*m!>»-, ■ «.■= *. .„i.rt -.i..-.-» «!, p*. *.'M''*V i;^l?»>w<is^~sw^^.^w*s"™«i>^*^^^ "

Specifications for Datalanguage, Version 0/9 Page

END

The ENDs are needed to delimit the list of elements of a
STRUCT. ', l«D' indicates that the string Is to be an
inversion key for the retrieval of outermost-LIST-members.

22

ÜB IM

•:..

I
I
1
I
i
I
i
i
I
1
I
I
I
I
I
I
1
I

Specifications for Datalanguage, Version 0/9 Page 7

k. Directory

The directory is a system file In which the names and
of all user-defined containers are kept.

descriptions

The directory is structured as a tree. Each node has an ident/
which need not be unique. There is a single path from the root of
the tree to any node. The idents of the nodes along this path are
concatenated^ separated by periods/ to form a pathname, which
unambiguously identifies the node (e.g./ A.B.C could be a pathname
for node with an ident of C).

In a la er version of the software/ the directory will be
generalized to provide for links between nodes/ so that it will not
properly be a tree. For now, however/ the tree model is convenient
and adequate.

A node may represent a container/ or it may simply hold a place in
the space of pathnames. When it represents a container/ it cannot
(currently) have subordinate nodes.

Eventually/ it is planned to model the directory as a structure of
containers, with its description distributed throughout the
structure. Most operations defined on the directory will be
defined on user data, and vice versa. Access privileges and
privacy locks will be part of the data description and will
likewise be applicable both to directory nodes and data structures
below the node level.

k.l CREATE

A CREATE-request either: (a) adds a node to the directory,
optionally associating the description of either a PORT or a
FILE with the node, or (b) creates a temporarv container which
is not entered in the directory, but has a description and can
be referenced in requests. If the description defines a file,
CREATE causes space to be allocated for the file.

To create a node with a description:
CREATE <pathname> <description> ;

To create a node with no description:
CREATE <pathnane> ;

Note that the description determines whether or not the
container is temporary (see section 3.2 for details).

A CREATE-request adds a single ;iode to the directory. Thi.'s to
add CCA.RAW.F to an empty directory, three requests are needed:

CREATE CCA ;
CREATE CCA.RAW ;
CREATE CCA.RAW.F ;

Notice that the last ident of the pathname doubles as the first
ident of the description:

CREATE CCA.RAW.G FILE LIST A STR (5) ;

? }

■■"i'^&tä

!
: ' ™"fflfffir»iHiii Ü st MBS

I
I
I
I
I
I
1
I
I
I
1
I
I
I
I
!

I
I

Specifications for Datalanguage, Version 0/9 Page 8

That is, G is both the ident of a node and the ident of an
outermost container of type LIST.

I».2 Delete

A DELETE-request deletes a tree of nodes and any associated
descriptions or data. The syntax is:

DELETE <pathname> ;
The named node and any subordinates are deleted.

Note that to delete data while retaining the directory entry
and description, DELETE should not be used (see section 6.3 for
the proper method).

U.3 LIST

The LIST-request is used to display system data of interest to
a user. It causes the data specified to be transmitted through
the Datalanguage output port.

Several arguments of LIST apply to the directory. LIST |ALL
transmits all pathnames in the directory. LIST SALL.SSOURCE
transmits all descriptions in the directory. Instead of fjALL,
a pathname can be used:

LIST <pn>.$ALL
Lists pathnames subordinate to <pn>.

LIST <pn>.£S0URCE
lists descriptions subordinate to the node represented by <pn>.

For details about the LIST-request, see section 10.1.

2k

lwiitim7iiiiMiiahiiiii.il i iiniiiii

i ■ ■■ - .■■■ ■

Specifications for Datalanguage, V ion 0/9 Page

5. Opening and closing containers

Containers must be open before they can be operated on.

A container is open when it is first created. It remains open
until closed explicitly by a CLOSE-request or implicitly by a
DELETE-request or by session end.

A closed container is opened by an OPEN-request. A temporary
container is always open; a CLOSE-request deletes it.

5.1 Hodes

An open container has a mode/ which is one of: READ, WRITE, or
APPEND. The mode determines the meaning and/or legitimacy of
certain operations en the container.

The mode is established by the operation which opens the
container. It can be changed at any time by a MODE-request.

A CREATE leaves the container in WRITE mode. An OPEN either
specifies the mode explicitly or implicitly sets the mode to
READ.

5.2 Syntax

To open a container:
OPEN <pathname> <mode> ;

or:
OPEN <pathname> ;

where <mode> is defaulted to READ.

To cloje ä container:
CLOSE <ident> ;

where <ident> is the name of an outermost container.

Two containers with the same outermost <ident> can not be
opened at the sanle tine (***).

To change the mode of an open container:
MODE <ident> <newmode> ;

5.3 LIST

LIST %0PEN transmits name, mode and connection status of each
open outermost container through the Datalanguage output port.
(The Datalanguage output port is the destination to which all
Üatacomputer diagnostics and replies arc sent. !t is
established when the use»" initially connects to the
Uatacomputer.) For details of the LIST-request, see section
lo.i. 25

** - - J* .

Specifications for Oatalanguage, Version 0/9 Page 10

li. Assignment

Assignment transfers data from one container to .another.

The equal sign ('=') is the symbol for assignment. The value of
the operand on the right of the equal sign is transferred to the
operand on the left. (Eventually« both operands will be
weakly-restricted Uatalaiguage expressions, which may evaluate to
sets as well as to single containers. Now, the left must be a
container name, the right may be a container name or a constant.)

Assignment is defined for all types of containers. When the
containers are aggregates, their elements are paired and data is
transferred between paired elements. Elements of the target
container that do not pair with some source element are handled
with a default operation (currently they are filled with blanks).

The operands of an assignment must have descriptions that match.
The idea of match i.ig is that the descriptions must be similar
enough so that it is obvious how to map one into the other.

b.l Condi tions

Assignment
(a)
(b)
(c)

for legitimate assignment

must reference objects, not sets. An object is;
an outermost container, or
a constant, or
in the body of a FOR-loop, either
(cl) a member of a set defined by a FOR-QPERAND, or
(c2) a container which occurs once in such a member

In the case of a reference of type (cl), the object referenced
is taken to be the current member. In the case of (c2), the
object referenced is that which occurs in the current member.
This is explained further in section 7.

The left operand of an assignmen
restriction. If it is an outermost
in either WRITE- or APPEND-mode. If
container, then the reference is of
some f-'UR-operand has established
assign-operand is an object. The FOR

is subject to further
container, it must be open
it is not an outermost
type (c), which means that
a context in which the
operand which establishes

this context must be the outnut-operand of the FOR.

When the assi«n-operand is an outermost container, it must be
mien. Such an operand must be referenced by its simple
container ident(***), not its directory pathname.

Iti the body of a loop nested in one
assignments arc- further restricted, du«
problem, bee section 7.2 for details.

26

or more other loops,
4.,. _ n in
v w a u/ a i np i KHitfii id c i un

■

»pecifi cat ions for üatalanguage, Version Ü/9 Page 11

I
I

Finally« the descriptions of the operands must natch. If one
is a constant, then the other must be a 5TRINGC***). If both
are containers/ then in the expression:

A = B;
the descriptions of containers A and B natch if:
1. A and U have the same type
2. if A and B are LISTs, then they have equal numbers of

LIST-members, or else A is an outernost-LIST.
3. if A and is are aggregates, then at least one container

immediately enclosed in A matches/ and has the same ident
as, one container immediately enclosed in iJ.

b.2 Result of assignment

If the operands are STRINGS/ then the value of B/
left-justified/ replaces the value of A. If B is longer than
A, the value is truncated. If B is shorter than A, then A is
f'lled on the right with blanks as necessary.

If the operands are STRUCTs/ then assignment is defined in
terms of the STRUCT members. If a member of k, ßA, matches and
he's the same name as a member of B, cB/ then mB is assigned to
uA. If no such £)B exists/ then n.A is filled with blanks.

If the the operands are LISTs, the result depends on several
factors. First, notice that the descriptions of the
LIST-nembers must natch; otherwise the assignment would not be
legitimate by the matching rules of 0.1.

If A is an outermost-LI ST, then it can be in either of two
modes: WRITE or APPEND. If A is in WRITE-mode, its previous
contents are first discarded; it is then landled as though it
were in APPEfJD-mode.

If A is not an outermost-LI ST/ then it is always effectively in
WRITE-node.

After taking the mode of A into account/ as described above,
the procedure is:

for each member of LIST B
(a) add a new member to the end of A
(b) assign the current member of B to the new member of A

ü.3 Del et'on of Data Through Assignment

If A is an outermost container in WRITE-mode, and B is a
container with description that matches A, and if B contains no
data, then A=B has the effect of deleting all data from A.
Note that if A is in APPENB-node !n these circumstances, then
A=B is a no-operation (i.e., has no effect).

?1

Specifications for Uatalanguage, Version 0/9 Page 12

7. FOR

I
I
I
I
I
I
I
!

ENP ;

produce output.

FOR <output set spec> , <input set spec> <body>

The output set is optional: that is, FOR need net
When the output set is omitted, the syntax is:

FOR <input set spec> <body> END ;

The operations specified in the body are performed once for each
member of the input set. References in the body to the input sot
i.ienber are treated as references to the current input set member,
►ihen an output set is present, a new member is created and added to
the output set for each iteration (i.e., for each input set
member). References to the output set member, similarly, are
treated as references to the currnnt output set member.

The output set spec must be the name of a LIST member. Each
iteration of the FOR will create one such member, and add it to its
LIST (hereafter called the output LIST). The body determines the
value that the new member receives. Any STRING in the new member
which is not given a value by the body receives the default value
of all blanks.

The input set s;;ec must be an expression evaluating to a set of
LIST-membcrs (see section 7.1 for details of input set
specification). Each iteration of the FOR will input one such
member; the FOR will terminate when each member of the set has been
processed,
cal led tiie

The LIST from which the input set members are drawn is
input LIST.

FOR is effectively a means of accomplishing variants of assignment
between a pair of LISTS. FOR is less concise than assignment, but
offers more flexibility. Its advantages are:
(a) not all the input LIST-mcmbers need

(b)
output LIST. A subset can be
the user has explicit control
output LIST-members.

selected
over the

be transferred to the
by content.
assignment of values to

£Q 9.

I

.'. ■

I Specifications fur Datalanguage, Version 0/3

1 Tli i s is nost easily understood by an example:

I
1

I
i
I

Page 13

P PORT LIST
i{ STRUCT

ü STR
C STR
ECU

F FILE LIST
.; STRUCT

A STRUCT
Al STR
A2 STR

B STR
C STR
ENO

(1)

(2)

(3)

P F ;

FOR P.R, F.R
P.R = F.R ;
END ;

FOR P.R, F.R WITH Al EQ 'XY' OR A2 Gt 'AB*
B = C ;
C = A2 ;
END ;

Here, (1) and (2) are entirely equivalent requests. However, (3)
is quite different and is not expressible as assignment. It
selects a subset of the F.Rs. The values it gives to the P.Rs
could not result from application of tf.o matching rules to F and P.

Uecause FÜR is effectively assignment between a pair of LISTs, the
LISTs referenced by a legitimate FOR-operation are largely subject
to the same restrictions as LISTs referenced in an assignment. One
exception is that the descriptions of the LIST-members need not
match.

These restrictions are:
(a) both LISTs must be objects in the context in which the FOR

appears.
(b) both LISTs must be open or contained in open outermost

containers
(c) if the output LIST is an outermost container, it must be in

WRITE- or APPEND-mode.
(d) If the ouput LIST is not outermost, the LIST which most

immediately encloses it must be the output LIST of an enclosing
FUR.

The node of the output LIST of the FOR affects the result much as
it would in an assignment: that is, a FOR outputting to a LIST in
W°ITE-mode overwrites previous contents, while a FOR outputting to
a u'ST in APPEND-mode adds to previous contents.

oq

I
I
1
I
I
I

I

I
I
I
I
I
I
I
1

Specifications for Datalanguage, Version 0/9 Page Ik

CAllTilltl IÜ IU£ HFADFR: For convenience, these specifications use
phrases such as 'LISTs referenced by a FOR*. Recall that such a
phrase is not literally correct, in the sense that the operands of
a FOR are always LIST members, not LISTs. LIST

7.1 Details of input set specification

Tiie input set is specified by a Datalanguage expression that
evaluates to a set of LIST-nembers. Such an expression can be
sinply the set of al1
of the Members of a
with the description:

F FILE LIST
R STRUCT

A STR
B STR

members of a LIST,
LIST, specified by

(1)
(1)

or it can
content.

be a subset
For example,

END
the expression;

F.R
references all R's LIST However: on the

F.R WITH A EQ '5'
references only those R's containing an A
The expressions permitted as input set

form:
<1ist-member-name> WITH <boolexp>

<boolexp> is constructed of comparison expressions
the Boolean operatorsAND and OR. Any expression

the

The
by

having the value '5'.
specifications are of

joi ned
can be

negated with MOT.

Comparison operators have the
is AND, then OR, then HOT.

highest precedence. Next highest

The comparison expre
<container name

where:
(a)

ssions are restrict
> <comop> <constant

<constant> is a
(see section 10

(b) <conop> is one
EU
NE
LT
GT
LE
GE

(c) <container name
in each LI5T-ne

The constant is trim
;;iake it equal in
compared. Notice th
desirable (users wil
release). In partic
numbers in Version
should actual 1y be d

str i n
.2 for
of six

equ
not
les
gre
les
gre

> is t
mber.
cated
s izo

at pad
1 have
ular,

U/9.
escrib

g constant en
a discussion
operators:

al
equal

s than
ater than
s than or equ
ater than or
he name of a

ed to the form:
>

closed in single
of constants)

quotes

al to
equal to
STRING that appears once

or padded with blanks on the right to
to the contai
ding on the
control over

care must be
(A number

ed as a number; eventually it will be

30

ner to which
right is

the padding
excerci sed
represented

it is be i ng
not always
in a future
when us in«
as a STRING

- ... >

Specifications for Datalanguage, Version 0/9 Page 15

1
I
I
1

1

1
i

\

I
I
I

possible to do tnis).

7.2 FOR-body

Two operations are legitinate
assignment.

These are subject to the restric
and in the introduction to 5
related to three requirements
recognizable (see Section 9 for
consistent regarding direction
containers/ both within itself
containers/ and (3) that transfe
sets of objects. The first two
will become weaker in later vers
requirement is temporary and
versions.

in FOR-body: FOR and

tions discussed in Section 6.1
ection 7. The restrictions are
: (1) that the names be
details)/ (2) that a request be

of data transfer between
and with the HOPF, of outermost

rs occur between objects, not
requirements are permanent/ but
ions of the language. The last
will be present only in early

Due to an implementation problem associated with Version 0/9/
there is a somewhat bizarre restriction applied to references
made in the body of a loop nested in another loop. This
restriction is not expected to pose any practical problems for
users/ and is not part of the language design/ but is discussed
here for completeness.

The restriction is most easily understood by example:

given the description
F LIST

R STRUCT
A STR (3)
ÜL LIST (3)

D STR (3)
C STR (3)
END

and the request fragment:
FÜR .../R

FOR .../B
s A • ... r* /

... ■ C ;
END

END

observe;
(a) The outer loop processes the set of R s in

loop processes
F.

the set of ß's ir, For
the
In the body of the inner loop/ there are references to A
and C/ which do not occur in B/ but do occur in R, That
is, the objects referenced in the inner looo body are
defined by the outer loop/ not the inner loop. In general/
this is fine; in the case of C/ however/ we have a problem.

31

WWBWWBHIBIBWWgE:lMMW«<UMIIia tvsKttKvvmmamMii • .^^Äja^wrsGRMWWßS«» WSWWilSSa^lW^I

Specifications for Datalanguage, Version 0/9 Page lb

Cci) C occurs bevond frhe, end of BL.
The 0/9 compiler is capable of neither (1) looking ahead enough
to locate C before it compiles code for the loop, nor (2) while
generating code to loop on the C's in UL, generating a separate
body of code that skips to the end of CL to locate C. Thus it
can handle A, which has been located before it begins loop
generation, but it cannot handle C, which requires a little
foresight.

The request fragment shown would not
description were changed to:

cause problems if the

F LIST
STRUCT

A 1
C £
ÜL

END

TR
TR

(3)
(3)

LIST
Ü

(3)
(3)

Then both A and C wuuld have been found
inner loop was generated.

before code for the

32

Specifications for Datalanguage, Version 0/9 Pnr.e 17

ii. Data Transmission

üata is transferred from container to container by execution of
assignment and Füll operations. The outermost containers involved
in transfers can be files or ports. If both are files, then the
transfer is internal to the Datacomputer. If either is a port/
then an address in the external world is needed to accomplish the
data transmission.

Such an address is supplied through a CONNECT-request, which
associates ü container (having a function of I'ORT) with an external
address:

CONNECT <idcnt> TO <address> ;
ilere <address> is either a specification of host and socket number,
or a TENEX file designator (for CCA's TENEX) enclosed in single
quotes. The host and socket form is:

<socket> AT <!.ost>
where <socket> is a decimal number, and host is either a decimal
number or a standard host name (since standard host names don't
exist right now, it lias to be the TENEX 'standard' name for the
host. Contact the author for the latest list.) If <host> is
omitted, it is taken to be the host from which the Natalanguage is
being transmitted.

The address associated with a port can be changed by issuing
another CONNECT-request.

A DISCONNECT-request sir,ply breaks an existing port/address
association without establishing a new one. (A CLOSE-request that
references an open port executes a DISCONNECT.) The syntax of
DISCONNECT is:

DISCONNECT <ident> ;

A port is disconnected when: (a) no successful CONNECT-request has
ever been issued fur it, or (b) a DISCONNECT for the port has been
executed since the last successful CONNECT.

When a disconnected port is referenced in an assignment, it is
connected by default either to:
(a) the connection used for the transnission of Data!angauage to

the Datacoi iputer, or
(b) the connection used for the transmission of Datacomputer

uiagnostics to the user
The choice between (a) and (b), of course, depends on whether the
reference is for input or output. These connections arc
established by the network user's ICP to the Datacomputer at the
beginning of the session.

uoto Li.at CONNECT and DISCONNECT do not open files or network
connections. They simply make address associations within the
Uatacomputer. The files and connections are opened before each
request and closed after each request.

33

llll —11———_..„„

Specifications for ÜatalanguagC/ Version 0/9

. .■

Page 18

3. Names in Datalanguage

A name is rncognizpd when it has been associated with a particular
data container or set of containers.

Datalanguage has mechanisms for the recognition of names in
cnntf'xts. That is, the neaping of the name is related to where it
appears.

This makes it possible to attach natural meanings to partially
qual ified names.

For example:

WEATHER FILE LIST
STATION STRUCT

CITY STfJ (lb)
STATE STR (l!i)
DATA LIST (2U)

OBSERVATION STRUCT
HOUR STR (2)
TEMPERATURE STR (3)
HUMIDITY STR (2)
PRESSURE STR U)
END

END

RESULTS PORT LIST
RESULT STRUCT

CITY STR (15)
HOUR STR (2)
TEMPERATURE STR (3)
END

FUR STATION WIT» STATE EQ 'CALIFORNIA'
FOR RESULT, OBSERVATION WITH HOUR C-T '12'

AND HUMIDITY LT '75'
CITY ■ CITY ;
HOUR = HOUR ;
TEMPERATURE = TEMPERATURE ;
END ;

END ;

in the assignment 'CITY = CITY', the first CITY is understood to be
RESULT.CITY and the second is understood to be STATION.CITY.

3^

'■ ^.^3%,

Specifications for Üatalanj;uage, Version 0/9 Page 19

9.1 Informal Presentation of Recognition Kults

'Ident' is used in the sense of section 3. for example/ in the
description:

r FILE LIST R STRUCT A STR (1) B STR (1) END
F, R, A and B are idents.

A context is a tree whose nodes are ?dents. In such a tree,
the terminal nodes are idents of STRINGS. The ident of a LIST
is superior to the ident of the LIST-member. The ident of a
STRUCT is superior to the idents of the STRUCT elements. The
context whose top node is F is said to be the context p.f £.

!

I

i
I

1
I
I
i

I
I

J p i

1

j

J

R j

j

i

1 !

+ •» +---__ +

! A ! ! B !

Figure 9.1-1 The context of F

A pathname is a sequence of idents, naming nodes along a path
from one node to another. A full pathname in the context
starts at the topmost node. Thus F.R.B is a full pathname in
the context of F. A partial pathname starts at a node other
than the topmost node (e.p, R.B, B),

In Datalanguage, pathnames omitting intermediate nodes, such as
F.B (which omits 'R'), are not permitted. Thus partial
pathnames are partial only in that additional names are implied
on the left. «c

1 ■
"

Specifications for Datalanguage, Version 0/9 Page 20

Three attempts at recognition of a pathname, PN, in a context,
CX, are made:

(a) recognition of PN as a full pathname In CX
(b) recognition of PN as a partial pathname in which only the

topmost node of CX is omitted
(c) recognition of PN as an arbitrary partial pathname

occurring only once in CX.

The attempts are made in the above order, and the recognition
process halts with the first successful attempt.

36

m

gse**^** "" ■' ■ ..-..■..-...;............-......

Specifications for Datalanguage, Version 0/9 Page 21

As an example, consider the description:

F FILE LIST
K STRUCT

A STR
Ü STR
S STRUCT

R STR

which defines the context in Figure 9.1-2.

! F i

!
!

i R

j

!

! j !
i 1 !

+ - «..-..+
1 A j j B j j S !

!
!

1 R !

Figure 9.1-2 Example Context

In this context, F.R.A is a full pathname. Thus, F.R.A is
recognizeu in attempt (a). R is a partial pathname in which
only the topmost node is omitted. Thus R is recognized in
attempt (b). Mote carefully that R is recognized as a
reference to F.R, not to F.R.S.R. Finally/ B is an arbitrary
partial pathname occurring only once in the context. Thus U is
recognized in attempt (c).

Two stacks of contexts are maintained: one for names used in an
input sense, and one for names used in an output sense. When a
name is to be recognized, it is first decided whether the
reference is fin input reference or an output reference. An

37

■'-'».«(i.KWi„ ,„fj

I Specifications for Oatalanguage, Version 0/9 Page 22

J
I

I
I
i
I
i

input reference is (a) the right hand operand of an assign/ or
(b) a name in the input set spec of a FOR. An output reference
is (a) the left operand of an assign, or (b) the output operand
of a FOR. The first context on the appropriate context stack
is then searched/ according to the procedure outlined on the
previous page. If the name is neither recognized nor ambiguous
in that context/ search continues in the next context on the
stack. If the name can be recognized in none of the contexts
on the appropriate stack/ it is unrecognizable.

When a stack is empty, the recognition procedure is different.
The search is carried on in a special context: the context of
gOPEN. Its top node, SOPEN, is a built in system ident.
Subordinate to «OPEN is a context for each open directory node.
Each such context represents all the idents defined in the
associated data description. Thus, if there were two open
directory nodes having data descriptions:

F FILE LIST R STRUCT A STR (i; B STR (1)
and:

P PORT LIST R STRUCT A STR (1) B STR (1)
then the context of JOPEN would be as in Figure 9.1-3.

1
I
I
1
I
1
1
I
1

♦ ■

!
i

! SOPEN !

I

I F !

i

!

! R J

j

i

+ ■

j

+ ■
A

■ ♦

i j

+ ■

+ ■

j

+ •

j

• ♦

!
!

! P 1

j
i

! R !

!
I

+ •
J
+ •

Figure 9.1-3 The context of 50PEN

wmm

-'•■ <Kxa*NMnw<sn - .. ■

i Specifications for U=r, a language, Version 0/9 Page 23

When a directory node is closed, the corresponding context is
removed fron the context of 20PEN. when a node is opened, the
associated context is added as the rightmost context
subordinate to %QPEIJ.

9.2 Context Stack Maintenance

The context stacks are always empty between requests. The
FOR-operator adds entries to the stacks. FOR A adds the
context of A to the input context stack. FOR A, B ... adds
the context of A to the output stack and the context of U to
the input stack.

Whci adding to an empty stack, FOR adds two contexts instead of
one. The second addition to the stack is the context of the
looparg; the first addition is the context of the outermost
container which encloses the looparg.

For example, given a context of |0PEN as in Figure 9.1-3, and
empty context stacks, the fragment 'FOR F.R ...' adds two
contexts: (1) the context of F, and (2) the context of F.R.

Contexts are removed from the stacks by the END matching the
FOR which added them.

39

li^MMaiiii^^Hgitti^iiMiffiittttiiita

Specifications for Datalanguage, Version 0/9 Page 2k

10. Miscellaneous Topics

10.1 The LIST-request

The LIST-request provides a means for the user to inspect
systen data of interest to him. The user can determine the
contents of the directory/ the source or parsed form of any
data description in the system, and the mode and connection
status of any open file or port.

The LIST operator has a single operand, which can have any of
several forms. The action of the operator is to output a list
of values on the Datalangauge output port.

To output a list of pathnames/ the operand used is '£ALL'.
When '^ALL* appears alone, all pathnames in the directory are
listed. When '.^ALL' appears after the last ident in a
directory pathname, the full pathnames of all nodes subordinate
to the named node are listed.

To determine the status of the open files and ports, the
operand ' SOPEN' is used. It outputs directory pathname, mode
and connection status.

To output one or more source descriptions, the operand
'.^SOURCE* is used. '.^SOURCE' is preceded with one of (a)
'SALL', (b) *$0PEN', or (c) the ident of an open outermost
container. The output is either (a) all descriptions, (b) all
open descriptions, or (c) a particular open description.

To output a parsed description, the operand '.?;DESC' is used
('^DESCRIPTION' is also accepted). This operand is preceded
either with (a) '20PEN', or (b) the ident of an open outermost
contai ner.

Examples:

Let P be the ident
d irectory pal :hname.

LIST ;ALL
LIST A.Ü.C • SALL
LIST iUPEN
LIST SALL.I .SOURCE
LIST SUPEN. ̂ SOURCE
LIST P.^SOURCE
LIST SOPEN SDESC
LIST P.2DESC

of an open PORT. Let A.B.C be a

Note that "LIST A. B.C. .^SOURCE ' is not le«al -- '.'"„SOURCE'
must be preceded with the ident of an open container, not a
pathname. A similar restriction applies to '.SDESC'.

1 g

I Specifications for Datalanguage, Version 0/9 Page 25

I
i

1
I
I
I
I
I
I
1
I
I
I

Id.2 Constants in Datalanguage

A constant of type STRING can be included in a Datalanguage
request by enclosing it in single quotes:

•AÜC'
A single quote is included in a constant by preceding it with a
double quote:

1 FATHER"1S'
Likewise, a double quote is included by preceding it with a
double quote:

'JOHN SAID ""HELLO""'

Such constants can be used or the right of comparison operators
and of assignment operators wi ich reference strings.

Eventually, Datalanguage will contain facilities for the
inclusion of constants of all datatypes; such constants are
simply a special case of the Datalanguage expression and will
be permitted wherever such expressions are permitted.

10.3 Character Set

Internally, Version Ü/Ü of the Datacomputer software operates
in 7-bit ASCII characters. Its output to the ARPANET is
converted to 8-bit ASCII. On input from the ARPANET, it
expects 8-bit characters, which it converts to 7-bit
characters.

To convert from 7- to 8-bit characters, a '0' bit is prefixed.
To convert from 8- to 7-bit characters, the high-order bit is
checked. If the high-order bit is a 'U', the bit is discarded
and the character is accepted as a 7-bit character. If the
high-order bit is a '1', then the character is discarded.

(In the following discussion, as elsewhere in this memo, all
references to numerical character codes are in decimal).

The remainder of this section discusses treatment of codes 0
through 127, when they appear in Datalanp;uage requests.

In general, printing characters are acceptable in requests,
while control characters arc not. There are some exceptions,
which are detailed below. The printing characters are codes
32-126. The control characters are codes 0-31 and 127.

Certain control characters are accepted:

Tab(U) is accepted freely in requests. It functions as a
separator (explained below).

E0L(31), meaning end-of-line, is accepted in requests,
functioning both as a separator and an activator (a). EOL
has a special meaning in data, and should not be introduced

1*1

mitommmmmmmmmmmmmmmii^——~^^^^^miiiimmiimmmi^^^^^mmm^^^^^mK^Kmmmmm^^^i*iiu*mi ——■—

•

Specifications for Uatalanguage, Version 0/9 Page 26

into STRING constants(***).

Control-L(12) is an activator and a high-level request
delimiter. It terminates the text of any request being
processed when it is encountered in the input stream. It is
useful in Uatacomputer-user program synchronization.

Control-Z(2ü) means end-of-session when encountered in
Datalanguage. It has the properties of control-L, and in
addition, causes the Uataconputer to execute an
end-of-session procedure, which results in closing the
Datalanguage connections, closing any open files or ports,
etc. The effect is equivalent to a LO0OUT(which does not
exist yet).

The two-character sequence <carriage return(13), line
feed(lU)> is equivalent to EOL (and is translated to EOL on
input fron the network). The reverse sequence, as well as
either character alone, is treated simply as other control
characters (ignored). i

I
I
I
I
s
1
I
1

(a) An activator character causes the Datacomputer to
process whatever has been received since the previous

II activator or the beginning of the request. The meaning
i of a request is independent of the presence/absence of

activators. However, a request will not be executed
I until an activator beyond the end of the request is

received.

Ail Other CQntrQl characters £X£ ignored.

The printing characters are further divided into four groups:
special characters, upper case letters, lower case letters, and
digits (the membership of these groups is defined in section
11).

Corresponding upper and lower case letters are equivalent in
requests, except within quoted strings.

Certain special characters have a lexical function, which is
either break or separator. A break, character terminates the
current lexical item and returns itself as the next item. A
separator character terminates the current item but does not
begin a new item (i.e., its only function is to separate items).
Multiple separators are equivalent to a single separator. A
separator can always be inserted before or after a break
character, without alterinn the meaning of the request.

The separators are tab('J), space(32), and end-of-1 i ne(31).

The break characters are left parenthes i s('»0), right
parenthesi s(i*l), equals(Gl), semicolonC 53), period(UC),
comma(1**0, quote(3fl), and slashU7).

Wl

lf^mmmmmmlm wmmmmmmimmmmamsmmmimmmm.imm*i.m<'m '.

vtyy&lM-r*: ■-
,..,#.•.... .- ■ . - .-■..■ ■—_-.;,

I
I
I
I

I
I
1
I
I
I

Specifications for Datalanguage, Version U/9 Page 27

While Version 0/9 defines (carriage return, linefeed) in terns
of EOL, network users should not think in terns of sending EOL's
to the Uatacomputer over the network. EOL is not part of the
network ASCII character set, and has no definite pernanent place
in Datacomputer implementation plans.

lb.** Comments

Comments can be included in Datalanguage requests. A comment is
begun with the two-character sequence '/*', and ended with the
two-character sequence
a comment does cause a
of a separator. , 0

4 J

'*/'. Since slash is a break character,
lexical break; its overall effect is that

■»«fftM^iiS^V^.^:. ^..

' IJ.UJIIMMJ

■ •■■■■■ ■ ■ ■■ ■■ ■-.. "■ .■ ■ ■ ■ ■ . ■ ■ .-: -:■-..■

Specifications for Datalanguage, Version 0/9 Pajie 28

10.5 Reserved Identifiers

Certain identifiers are reserved in Datalanguage, and should not
be used to name containers or directory nodes. These are:

AMD
APPEND
AT
CLOSE
CONNECT
CREATE
DELETE
DliiCONNECT
END
EQ
FILE
FOR
GE
CT
LE
LIST
LT
MODE
NE
NOT
OPEN
OR
PORT
READ
STR
STRUCT
TO
WITH
WRITE

More reserved identifiers will be added in Version 0/10.

^^sXMMiifiä^^^tf^^^tt^Ki^fifiSi^^^^^^ri^^MMMiHNHflMHHHHNMDffSffllHNMHiBHI^HIHBIHi

I pose 3C

11. Jütal jn ;Jd.ie Syntax Expressed in IJKF

!

I
I
l

1
1
i
1
I
i
I
I

11. l .<e4u«JStii

il.l.ül <roqucst>

ll.l.üi <i"OqUCSt>

11.1.Ü3 (ri.Muest)

11.1. JU <roquest>

11.1.U5 <rogucst>

11.1.Jo <requcst>

11.1.J7 <request)

11. Lud <request)

il.l.JJ <roqucst>

11.1.U <rcquc5t"

11.1.11 <roquest>

= <crroto> ;

= JPE!: <pn> ;

= OPEN <pn> <i;Of,c> ;

= CLOÖE <irient> ;

= CONNECT <i'!mt> TO <o.:c!rrss> ;

= DISCONNECT <i .Vnt> ;

= 10HE <i;'ont> <icdo> ;

= DELETE <pn> ;

= LIST <1istcr~> ;

= <sr-rcquest> ;

/+5

Hümii MM

■ ■ ■■

Page 31

11.2 Data Description and Creation

I

t
I
i

I
i

i
I

1
i
I
1
1

11.2.01 <create>

11.2.02 <create>

11.2.03 <create>

11.2.0** <desc>

11.2.05 <attributes>

11.2.06 <attributes>

11.2.07 <attributes>

11.2.08 <attrifautes>

» CREATE <pn>

= CREATE <pn> <ftn> LIST <dcsc>

■ CREATE <pn> <ftn> LIST <size> <dcsc>

<ident> <attributes>

LIST <size> <desc>

STRUCT <descs> END

STR <sizc>

STR <size> ,I *P

11.2.0'J <descs> ::= <desc>

11.2.10 <descs> ::= <descs> <desc>

11.2.11 <ftn>

11.2.12 <ftn>

11.2.13 <ftn>

11.2.14 <ftn>

= PORT

= FILE

= TEMP PORT

= TEMPORARY PORT

11.2.15 <size> ::= (<integer constant>)

UP

^^it,^^''^"'^-''

ii^liiteMHMMMMMMIMH^HMililNMMM

'■*msmm- ^•#*!®»Bi;teffi»iH

I
I
I
I
i

11.3 Joto 3torn»o and Retrieval

11.3.J1 <sr-requost> ::= <nssi-:n>

11.3.02 <sr-toquest> ::= <1oor>>

11.3.03 <acsi~n> ::= <pn> = <chjcct>

V^c 32

11.3.01+ <loop> ::= FO.l <1oopcir~> <locnbody> Pf!r

11.3.05 <loopar<*> ::= <exp>

11.3.JO <loopjr>i> ::= ^pn) , <exp>

I
1
1
i

I
i
I
I

11.3.07 <loopbody>

11.3.03 <loopbody>

11.3.0J <1oopbody>

= <sr-rpqucst>

= <locnbodyl> <sr-rcquost>

= <loopbodyl>

11.3.1J <loopbodyl> ::= <sr-rpquest> ;

11.3.11 <loopbodyl> ::= <koobodyl> <sr-reque5t> ;

■mn

PCTO 33

11.4 Expressions

11.4.01 <oxn> ::= <pn>

11.4.02 <exp> ::= <pn> WITH <boolexp>

11.4.03 <boolexp>

11.4.04 <boclexp>

11.4.05 <L«oolexp>

11.4.ftÖ <Ju0l0Xp>

11.4.07 <1JOO1CXP>

<pn> <conop> «[string constant/

(<boolexp>)

HOT <booloxp>

<;.oolexp> A*!C <boolcxp>

<boclexp> J". <!>oolexp>

11. 4 . Jo <COIiiOp>

1 1. 4 . DJ <COi iCp>

11. 4 . lj <CÜi.)OP>

11.4.11 <conop>

11. 4 . 12 <COI .Op>

11.4.13 <COi :Op>

E 1

I:E

GT

LT

GE

LE

4 8

äsa MMMBMMM»

11.5 .ii ica] 1 oneous

Pn?,o 3'4

11.5.01 <jj«.irc3s>

<sJote>

11.5.02 <aJdrcss>

il.5.03 <a ldress>

:= <quote> <TEi:EX file designators

:= <socket) AT <hcst>

:= <sockot>

11.5.Ü4 <socket> :: = <Intej?er constant) //W.TE^P^rJE?-

JECI;:AL

11.5.05 <host> :

üfiCI.IAL

11.5.0C <:iost> :

< Integer constant) / / \"JEVr:\EJEr) A3

*** TENEX Lost nosiies *****

11.5.J7 <cbject> ::= <pr1>

11.5.03 <ouject> ::= <strlnr; constant)

11.5.09 <!,iode>

11.5.10 <i;:ode>

11.5.11 <t;,ode>

= .IEAD

= APPEND

= .MITE

_ ,K<»^wff'wi>'" '-•■'--

PagC 35

11.5.12 <1istar.;>

11.5.13 <listarg>

11.5.12» <listarg)

11.5.15 <li3targ>

11.5.10 <LI3TAP.G>

11.5.17 <listarg>

11.5. lo <listarg>

11.5.U <||stars>

5ALL

<pn> . ;ALL

"iOPEtl

4ML . '»Cüü:iCt"

<IDEfJT> . iSOl-.tCE

•«OPEf.' . ^COUflCE

;OPEfl . $3CSC

<ident> . ;;)EGC

11.5.20 <?n> ::= <ident>

11.5.21 <jjn> ::= <pn> .< i dent>

11.5.22 <idcnt>

11.5.23 <ident>

11.5.24 <ident>

■ <lcttcr>

= <ident> <1etter>

= <ident> <di«it>

11.5.25 <intcgcr constant) ::= < d 1 a; i t>

11.5.20 <integer constant) ::= integer constant) <digjt>

11.5.27 <string constant) ::- <quote> <string conbody)

<quoto>

11.5.23 <string ccnbcd,) ::= <nonquotc)

11.5.2J <string conbody) ::« <strlr.s conbody) <nonquote>

50

11.L Character Set

Page 3C

11.6.01 <soparator>

11.6.02 <separator>

11.6.03 <separator>

//SPACE(32)

//TAJ(O)

<ecl>

11.6.04 <special>

11.CJ.05 <special>

11.6.00 <spcclal>

<quote>

<suporquote>

<spccial1>

11.G.07 <lettcr> ::= A

11.6.03 <1etter> ::= 6

ll.ii.03 <letter> ::= Z

11.6.10 <letter> ::= a

ll.o.ll <letter> ::= b

ll.u.12 <1etter> ::= z

11.0.13 <Jigit> ::= 0

11.6.14 <digit> ::= 1

ll.o.lS <dUit> ::= 0

51

*mm*mmmmmm*mmm -

Pase 37

1.0.1b <nonquotc>

1.0.17 <nonquoto>

1.0.13 <nonquotc>

1.0.10 <nonquote>

1.0.20 <nonquote>

1.0.21 <nonquotc>

<1etter>

<dicit>

<superquote> <quote>

<superquote> <supcrquote>

<special1>

<scparator>

1.0.22 <eol> ::= //EOL (31)

1.0.23 <eol> ::= <carriase return) Oine foed>

1.0.2^ <carriase return) ::= //CA.^IACE 3ETUM (13)

1.0.25 <line feed> ::= //LliiE FEED (10)

1.0.20 <quote> ::= • //SINGLE aiiOTEUi»}

1.0.27 <superquote>

1.0.22 <spec ial1>

1.0.23 <5peciall>

1.O.30 <specia11>

l.b.31 <speciall;>

1.0.32 <speciall>

1.0.33 <speciall>

l.b.34 <speciall>

1.0.35 <speciall>

1.0.3b <SPECIAL1>

» " //D0U3LE 4U0TE(3'O

! //EXCLAMATlOi: POI r:TC33)

if //NUMBER SICN(35)

$ //DÜLLA7 $IGN(3G)

% //PERCENT S1CMC37 3

& //A."iPE3SANn(38)

(//LEFT PAUNTHESISUO)

) //i'JGMT PAäENTUESISUI)

* //A3TERISKU2)

+ //PLUS SIGNU3)

52

Page 38

1.6.37

1.0.33

1.0.3J

1.3.40

1.6.41

1. 0 . 4 2

1.0.43

1.0.44

1.6.45

l.o. 46

1.0.47

1.0.43

l.o.4J

l.o.50

1.0.51

1.0.52

1.0.53

l.o.54

1.0.55

1.6.5G

1.0.57

<spccial1>

<special1>

<special1>

<special1>

<special1>

<special1>

<special1>

<special1>

<special1>

<special1>

<special1>

<speci al1>

<spccial1>

<special1>

<special1>

<special1>

<specai11>

<special1>

<special1>

<special1>

<special1>

{

I
}

53

//C0fi."iA(44)

//MlMUS SIGN(45)

//PERIODUC)

//3LA3;IU7)

//COLON(53)

//3OMC0LOr:(50)

//LEFT ANGLE BRACKET(GO)

//EQUAL 3 IHKCD

//III GMT ANGLE BSACUEK 02)

//1UF.3TIor: ;1A1K(C3)

//AT-3IGN(o4)

//LEFT CriUA:1vF 3RACKEK31)

//JACK SLASII02)

//RIC;IT SOJA3E BP.ACKET(33)

//Ci:iCUi:FLEX(3«t)

//UNDEHCAIOS)

//ACCENT GRAVEOC)

//LEFT 3RACC(123)

//VERTICAL O.MC 12U)

//,-JirüT J3ACE(125)

//TILDCC12C)

.. ' .-lu-ii-iimiiiii

